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A B S T R A C T

Various models and simplified equations are available to predict wind erosion potential. However, their per-
formance can be often site-specific, depending on soil characteristics and agronomic practices, warranting site-
specific model validations. Thus, in this study, we 1) validated the wind erodible fraction (WEF) predictive
equations by Fryrear et al. (1994) and López et al. (2007) and 2) estimated the total soil loss with the Single-
event Wind Erosion Evaluation Program (SWEEP) using 3-yr measured data from six experiments located across
a precipitation gradient in the central Great Plains. Each site had three corn (Zea mays L.) residue removal
treatments: control (no removal), grazed, and baled. The measured and predicted WEF were significantly cor-
related. While the Fryrear et al. (1994) equation performed better than the López et al. (2007) equation, it
underestimated WEF with 59% uncertainty across site-years. To reduce this underestimation and uncertainty, we
developed a new statistical equation (WEF%=84.3+2.64×% silt-0.30×% clay-7.43×% organic matter-
0.15×% residue cover; r2= 0.56). The predictive ability of the new equation was, however, no better than that
of the existing predictive equations, suggesting the need for further refinement of WEF equations for the region.
Simulated total soil loss by wind using the SWEEP model indicated that corn residue baling may increase soil loss
if residue cover drops below 20% in the study region. Overall, the existing WEF equations could under- or over-
estimate WEF based on site-specific residue management, warranting further model refinement and site-specific
validation, whereas the SWEEP estimated soil loss corroborates the critical importance of maintaining sufficient
residue cover (> 20%) to reduce wind erosion.

1. Introduction

Soil models are important tools to integrate existing soil data and
predict soil response to management practices including crop residue
removal. Removing crop residues such as from corn through baling and
grazing is a common practice for livestock production in the central
Great Plains. Such practice can reduce soil aggregate stability and or-
ganic C concentration, and alter micro-climatic conditions, potentially
increasing risks of wind erosion (Blanco-Canqui and Wortmann, 2017).
Predicting wind erosion potential using measured data from re-
presentative soils can be key to assess how crop residue removal affects
wind erosion potential in wind erosion-prone environments including
the central Great Plains.

One of the most sensitive indicators of wind erosion potential is the
wind erodible fraction (WEF). The WEF includes soil particles or dry

soil aggregates< 0.84mm in diameter. It is frequently used to predict
soil wind erodibility in empirical models such as the Wind Erosion
Equation (WEQ; Woodruff and Siddoway, 1965) and process-based
models such as the Wind Erosion Prediction System (WEPS; Tatarko
et al., 2018). Wind erodible fraction can be determined using a rotary
sieve (Lyles et al., 1970), flat sieve (López et al., 2007) or empirical
equations (Fryrear et al., 1994). Fryrear et al. (1994) developed a WEF
equation based on 3000 samples in the US and included sand content,
silt content, ratio of sand to clay, organic matter content, and CaCO3

concentration as main predictors. The equation explained 67% of the
variability in WEF for the US soils. López et al. (2007) showed that the
equation developed by Fryrear et al. (1994) failed to predict WEF for
soils in Spain and Argentina. The lack of predictability was mainly due
to higher CaCO3 concentration and organic matter content and lower
sand to clay ratio in their soils compared to the US soils. Recently, Guo
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et al. (2017) observed no correlation of WEF with soil texture, organic
matter content and CaCO3 concentration for different croplands. The
above literature review indicates that the performance of WEF may
vary with region and management practice. Furthermore, it suggests
the need to validate and refine the existing WEF prediction equations
on a site- or region-specific basis and different management practices
such as crop residue baling and grazing.

In addition to using simplified or statistical equations, soil loss due
to wind erosion can be simulated using process-based models such as
Single-event Wind Erosion Evaluation Program (SWEEP). The SWEEP
model is a sub-model of the Wind Erosion Prediction System and is
designed to estimate soil loss for single-day storm event given site
specific surface inputs. In addition, the SWEEP model can estimate the
threshold wind velocity to initiate wind erosion for a given site. Only
one study is available in Nebraska that simulated soil loss, which used
the SWEEP model under residue grazing and baling at a single site on a
loamy soil (Blanco-Canqui et al., 2016). However, total soil loss may
vary based on soil texture, climate, and residue cover (Blanco-Canqui
and Wortmann, 2017). Thus, modeling of wind erosion using measured
data from a wide range of soil textural classes, climates, and residue
management strategies is needed to better understand how manage-
ment practices such as crop residue baling and grazing can affect soil
loss across a precipitation gradient in the central Great Plains. Thus, the
objectives of this study were to: 1) validate the wind erodible fraction
(WEF) predictive equations by Fryrear et al. (1994) and López et al.
(2007) and 2) estimate the total soil loss with the Single-event Wind
Erosion Evaluation Program (SWEEP) using 3-yr measured data from
six experiments located across a precipitation gradient in the central
Great Plains.

2. Material and methods

The objectives of this study were accomplished by using 3-yr data
collected from six sites located across a precipitation gradient in
Nebraska. The study sites were located near Nebraska City, Norfolk,
Clay Center, Ainsworth, Odessa, and Scottsbluff, NE. The experiment
had three corn residue treatments: control, grazed, and baled. No re-
sidue was removed after corn harvesting for the control treatment. For
the grazed treatment, cattle grazed residues to remove about 12% of the
total corn residue produced. The stocking rate ranged from 3.5 to 11
animal unit months (AUM ha−1) across site-years. Baling treatment was
applied by the farm cooperators by mechanically cutting the corn re-
sidue to height of 5- to 30-cm, raking and then removing residue out of
plot as round bales. Additional details about the experimental site,
management, soil properties, and residue cover are given in Table S1
and S2.

2.1. Data collection

In the first year, six sites were sampled with three treatments, re-
plicated thrice at three sites and twice at other sites. Thus, we had
(3× 3×3)+ (3×3×2)=45 data points for the first year. In the
second year, four sites were sampled with three treatments replicated
thrice at two sites and twice at other two sites, resulting in
(2× 3×2)+ (2×3×3)=30 data points. In the third year, three
sites were sampled with three treatments, replicated thrice at two sites
and twice at one site, resulting in (1×3×2)+ (2× 3×3)=24
points. In total, we had 99 data observation points for analysis. Field
and lab analysis of relevant soil surface properties were conducted
following standard protocols. We determined particle size distribution
by hydrometer method (Gee and Or, 2002), organic matter content by
loss on ignition method (Combs and Nathan, 1998), CaCO3 con-
centration using Helrich (1990) method, gravimetric water content
using Gardner (1986) method, and residue cover by line transect
method (USDA-NRCS, 2002). Summary statistics of the dataset used in
this study are given in Table 1. Data collected from six sites were

representative of a range of soil particle size distribution, organic
matter, precipitation, and cropping systems prevalent in Nebraska
(Table S1). Our dataset was well within the range of dataset used by
Fryrear et al. (1994) but had some differences compared to the López
et al. (2007) dataset. For example, the highest amount of CaCO3 con-
centration in López et al. (2007) study was 40.7%, whereas our dataset
had relatively low CaCO3 concentration with maximum of 6.9%.

2.2. Validation of existing equations

We used measured soil properties to predict WEF by the equations
developed by Fryrear et al. (1994); Eq. (1), López et al. (2007) using
rotary sieve WEF data (Eq. (2)), and López et al. (2007) using flat sieve
WEF data (Eq. (3)).

= + + + −WEF 29.09 0.31 sand 0.17 silt 0.33 sand/clay 2.59

organic matter–0.95 CaCO3 (1)

= + +WEF 9.98 6.91 sand/clay 14.1/organic matter (2)

= + +WEF 4.77 7.43 sand/clay 27.6/organic matter (3)

All variables in the above Eqs. (1)-(3) are listed in terms of per-
centage (%).

Our measured WEF was determined using the flat sieving method
(Nimmo and Perkins, 2002; López et al., 2007; Blanco-Canqui et al.,
2016). Briefly, soil samples were collected from the 0- to 5-cm soil
depth using a flat base shovel and placed in two rectangular trays. The
samples were air-dried for 72 h and placed on top of a stack of sieves
with openings of 45-, 14-, 6.3-, 2-, 0.84-, and 0.425-mm arranged in a
descending order. The samples were mechanically sieved for 5min at
278 oscillations min−1 using a Ro-Tap sieve shaker (RX-29 model, W·S
Tyler, Ohio, US). The aggregates remaining on each sieve were weighed
to determine the fraction of aggregates within each aggregate-size class
(< 0.425, 0.425–0.84, 0.84–2, 2–6.3, 6.3–14, 14–45, and > 45mm).
Wind erodible fraction (%) was calculated by dividing the amount of
soil with< 0.84mm diameter aggregates by the total amount of soil
sample (Chepil, 1953).

The model fit was evaluated by plotting predicted WEF versus
measured WEF along with 1:1 line. We also checked the performance of
each equation for whole dataset, by treatment, and by site dataset
across years using root mean square error, coefficient of variation and
determination, and absolute relative error.

2.3. Development of a new predictive equation

After examining the performance of existing WEF equations (Eq.
(1)-(3), we developed a new WEF equation based on data collected from
our study sites. Data collected in 2015 and 2016 was used to develop
the prediction equation (total data points= 75), while the data col-
lected in 2017 (total data points= 24) was used to check the equation

Table 1
Summary statistics of soil and corn residue variables used for validation, de-
velopment of new predictive equation, and SWEEP simulations.

Variable (%) No. of data
points

Mean Std. Deviation Minimum Maximum

Wind erodible
fraction

99 55.6 26.4 11.1 98.1

Sand 99 43.7 26.3 15.3 86.6
Silt 99 7.4 3.5 1.4 15.8
Clay 99 48.9 26.7 3.9 73.9
Sand to clay ratio 99 3.3 5.2 0.2 22.2
Organic matter 99 3.1 1.4 0.6 6.0
Water content 99 20.0 10.0 10.0 50.0
Residue cover 99 62.9 25.1 9.0 98.7
CaCO3 99 2.2 1.6 0.5 6.9
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fit. The soil properties that were significantly correlated (p < 0.05) in
the dataset were used for developing the new WEF prediction equation.
Specifically, we used organic matter content, particle size distribution,
CaCO3 concentration, gravimetric soil water content, and percent re-
sidue cover to develop new WEF predictive equation using correlation
and step-wise regression analysis. The intrinsic soil properties such as
particle size distribution and CaCO3 concentration were kept constant
for each site in validation. The prediction equation dataset, organic
matter and percent residue cover were relatively similar among site-
years whereas gravimetric water content, being a highly dynamics soil
property had some inevitable variation from year to year (Rakkar et al.,
2019).

2.4. Predicting soil loss using the SWEEP model

The SWEEP model (version 1.3.9) was used to simulate wind ero-
sion for an 805m×805m field area with no wind barriers, no crust on
the soil surface, and a random roughness of 6mm for the three residue
treatments. We used measured particle size distribution, bulk density,
geometric mean diameter and geometric standard deviation of dry ag-
gregates, and percent crop residue cover as model inputs. Other re-
levant soil parameters were calculated by the model based on site-
specific soil series. Corn residue characteristics such as residue height,
stem area index, row spacing, and stalk location (seed placement) were
assumed and kept constant for all sites. Simulations assumed no
growing crop. A summary of inputs for SWEEP modeling is presented in

Table 2. Air density was estimated based on elevation and average
temperature of each site. Using above given inputs, total soil loss was
simulated for two conditions: 1) bare soil using residue cover as zero
and 2) residue covered soil using residue cover of each treatment plot.
The SWEEP model was programmed to estimate total soil loss at
13m s−1 of wind velocity for three hours for March (soil sampling
period) month. March also represents the typical high wind erosion
season of February through May in the U.S. Great Plains. During March,
in a typical continuous corn or corn-soybean rotation prevalent in Ne-
braska, soils are commonly without growing vegetation and may have
limited or no residue cover based on site-specific residue management
scenarios. In addition, threshold velocity to initiate erosion was de-
termined based on measured soil surface conditions. Historical wind
data was retrieved by the SWEEP model from the SWEEP weather da-
tabase for each site. The retrieved dataset was then used to calculate
probability of threshold wind velocity to occur in given month by the
SWEEP software given the measured surface conditions for each re-
plication.

2.5. Data analysis

Data were analyzed using SAS version 9.4 (SAS Institute, 2015).
PROC REG was used to determine model fit of predicted and measured
WEF. Normality of residuals was checked using diagnostic plots of
RStudent and predicted value. PROC CORR was used to determine
Pearson correlation coefficient between relevant soil properties and
WEF. PROC STEPWISE was used to select soil properties and create the
new WEF prediction equation at 85% confidence level. The SWEEP
model output was mainly non-normally distributed, therefore, mean
and standard error were used to determine differences among corn
residue treatments.

3. Results and discussion

3.1. Validation of existing WEF prediction equations

Fig. 1 shows the relationship between measured and predicted WEF
using Eq. (1) by Fryrear et al., 1994, and Eq. (2) and Eq. (3) by López
et al., 2007 across all treatments and site-years. The measured WEF was
significantly correlated with the predicted WEF for all three existing
equations (p < 0.001). Regression analysis indicated that Eq. (1) ex-
plained 41% of the variability in the measured WEF. Comparison of
WEF with 1:1 line indicated that Eq. (1) under-estimated WEF for 77%
of the dataset. In general, the underestimation by Eq. (1) increased as
measured WEF increased above 40%. Scatter-plots of measured and
predicted WEF indicated that Eq. (1) performed better than Eq. (2) and
Eq. (3). The predicted WEF by Eq. (2) explained 36% and Eq. (3) ex-
plained 40% of the variability in the measured WEF. The Eq. (2) un-
derestimated WEF for 83% of the dataset whereas Eq. (3) under-esti-
mated WEF for 80% of the dataset. The Eq. (1) output had relatively
less absolute relative error and standard deviation compared with Eq.
(2) and Eq. (3). Also Eq. (1) showed maximum absolute error of 127%
relative to 185% and 204% by Eq. (2) and Eq. (3), respectively. Overall,
results show that Eq. (1) performed better than the other two equations
(Table 3).

To examine the performance of existing WEF equations under dif-
ferent residue management scenarios, dataset was sorted into three sub-
sets of corn residue baling, grazing, and control. Figs. 2 and 3 show the
relation between measured and predicted WEF for three different re-
sidue management scenarios. The measured WEF was significantly re-
lated to predicted WEF for all three residue treatments for all existing
WEF Eqs. (1)-(3). However, the coefficient of determination varied
among Eq. (1)-(3) based on the treatments. For baled dataset, the
output from Eq. (1) explained only 38% of the variability and under-
estimated WEF for 94% of the dataset. The Eq. (1) also under-estimated
WEF for 76% of the dataset for the control and 64% for the grazed

Table 2
Parameters used for simulating soil wind erosion in the SWEEP model.

SWEEP Parameter Source Value

Field x length and y length, m Assumed 805
Angle, ° from north Assumed 0
Wind barriers Assumed 0

Biomass Residue average height, m Assumed 0.0762
Residue stem area index, m2m−2 Calculated 0.0036
Residue leaf area index, m2m−2 Assumed 0
Residue flat cover, m2m−2 Measured 0.09–0.99a

Row spacing, m Assumed 0.76
Seed placement Assumed Ridge

Soil layers Number of layers Assumed 1
Thickness, mm Assumed 50
Sand fraction Measured 0.15–0.87
Very fine sand fraction Calculated 0.09–0.36
Silt fraction Measured 0.01–0.16
Clay fraction Measured 0.04–0.74
Rock volume fraction Assumed 0
Dry bulk density, Mgm−3 Measured 0.97–1.43
Average aggregate density, Mgm−3 Calculated 1.8
Average dry aggregate stability,
ln(J kg−1)

Calculated 1.50–3.42

Geometric mean diam. of aggregate sizes Measured 0.29–13.50
Geometric SD of aggregate sizes Measured 1.68–12.6
Minimum aggregate size, mm Calculated 0.01
Maximum aggregate size, mm Calculated 29.2–43.0
Soil wilting point water content,
MgMg−1

Calculated 0.05–0.21

Soil surface Allmaras random roughness, mm Assumed 6
Ridge height, mm Assumed 0
Ridge spacing, mm Assumed 760
Ridge width, mm Assumed 0
Ridge orientation, ° from north Assumed 0
Hourly surface water content, MgMg−1 Assumed 0

Weather Air density, kgm−3 Calculated 1.10–1.22
Wind direction, ° from north Assumed –
Anemometer height, m Assumed 10
Aerodynamic roughness, mm Assumed 10
Zo location flag Assumed Station
Wind table, m s−1 Assumed 13 for 3 h

a Residue flat cover was considered zero for simulating soil loss for bare soil
conditions whereas actual residue flat cover was used for simulating soil loss for
residue cover scenarios.
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dataset. The output by Eq. (2) performed better than Eq. (1) for the
baled dataset with 48% variability explained. Similar to Eq. (1) output,
Eq. (2) also under-estimated WEF ranging from 78% for grazed to 90%
for baled dataset. Based on average absolute relative error, Eq. (1)
performed better than Eq. (2) for all three residue treatments (Table 4).
The relation between measured WEF and predicted WEF using Eq. (3)
for each residue treatment across site-years is presented in Fig. 3. Si-
milar to Eq. (2), the relation of measured and predicted WEF by Eq. (3)
varied based on treatment. Based on the absolute relative error, root
mean square error, and coefficient of variation, Eq. (1) outperformed
Eq. (2) and Eq. (3) (Table 4).

To observe the influence of site characteristic on predictive ability
of existing WEF equations, regression analysis parameters and absolute
relative error were determined between measured WEF and predicted
WEF for each site across treatments and years (Table 5). Predicted WEF
was significantly correlated with measured WEF only at two of the six
sites for all three WEF equations. Sites (Scottsbluff, Ainsworth, and
Norfolk) with high sand (> 50%) and low organic matter (< 2%)
showed coefficient of determination<0.15, whereas the Nebraska City
and Clay Center sites, with relatively higher clay content showed sig-
nificant correlation between measured and predicted WEF. Similar to
previous results of whole and by treatment dataset, existing equations
underestimated WEF for most of the dataset. Based on absolute relative
error, root mean square error, and coefficient of variation, the Fryrear
et al. (1994) equation performed better than the López et al. (2007)
equations for silt loam sites whereas the López et al. (2007) equations
performed better for sandy loam sites (Table 5).

The results of regression analysis between measured WEF and pre-
dicted WEF indicate that the Fryrear et al. (1994) equation performs
better than the López et al. (2007) equations for our study soils. The
poor relationship of measured data with predicted WEF using López
et al. (2007) equation could be due to low CaCO3 concentration in our
soils (< 7%) compared to the soils studied in Spain (30–40%). Also, the
values of soil properties in our study were within the range used by
Fryrear et al. (1994), which could explain the better predictive ability
of the equation by Fryrear et al. (1994) for our study soils than the
equations by López et al. (2007).

The existing WEF equations underestimated, however, the actual
WEF. One reason for such difference could be the usage of different
methodologies to measure WEF between our study and the studies by
Fryrear et al. (1994) and López et al. (2007). The existing WEF equa-
tions (Eq. (1) and Eq. (2)) were developed based on rotary sieve results
whereas, we used a flat sieve to measure WEF in our study. Previous
studies found a strong relation between WEF obtained from rotary sieve
and flat sieve (López et al., 2007; Guo et al., 2017). However, previous
studies also reported an under-estimation of WEF using rotary sieve
compared to flat sieve (López et al., 2007, Guo et al., 2017). López et al.
(2007) indicated that with rotary sieve procedure, small aggregates do
not pass through sieves and are generally, collected with coarser ag-
gregate fraction, resulting in underestimation of WEF.

We observed under-estimation of WEF even with usage of the flat
sieve WEF Eq. (3) developed by López et al. (2007). It appears that the
flat sieve procedure may need further calibration to standardize the
sieving time, oscillation per minute, amplitude, and devices to obtain
more reliable WEF results. Also, availability, handling, and operation of
flat sieve is easier than the rotary sieve method. Therefore, a new
equation based on standardized flat sieve analysis could be helpful to
avoid over and underestimation of actual WEF in future studies. In
addition, the differences observed in predictability of existing equations
under residue grazing, baling, and control (Figs. 2 and 3), warranted
including additional parameters such as residue cover, to improve the
performance of existing WEF equations. Overall, our results indicate
that the Fryrear et al. (1994) equation could be used for soils in Ne-
braska, however, there is still 45 to 59% uncertainty in prediction along
with under-estimation of WEF within a treatment dataset and across
site-years.
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Fig. 1. Relationship between measured and predicted wind erodible fraction by
A) Fryrear et al. (1994), B) rotary, and C) flat sieve equation by López et al.
(2007) across site-years.

Table 3
Absolute relative error, root mean square error, and coefficient of variation
between measured wind erodible fraction (WEF) and predicted WEF across site-
years. No. of data points= 99.

Fryrear et al.
(1994)

López et al. (2007)

Rotary sieve
equation

Rotary sieve
equation

Flat sieve
equation

Absolute relative error
(%)

Mean 43 48 48
Std. deviation 23 29 32
Maximum 127 185 204
Minimum 1 1 0.35

Root mean square error 20.4 21.2 20.5
Coefficient of variation

(%)
36.7 38.2 36.9
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3.2. Development and testing of a new equation

Prior to developing a new WEF equation, correlations among soil
properties for our study were performed across treatments and site-
years. Analysis showed significant correlation of WEF with all soil
properties that are used in the existing WEF prediction equations Eqs.
(1)-(3) except CaCO3 concentration. The results showed that WEF in-
creased as sand (r=0.55) and silt content (r=0.35) increased,
whereas it decreased as clay content (r=−0.58), organic matter
concentration (r=−0.59), water content at the time of soil sampling
(r=−0.46), and percent residue cover (r=−0.23) increased. It is
well known that an increase in clay content and percent residue cover
stabilizes the aggregates whereas increase in sand and silt content may
weaken the aggregates due to fewer binding forces among particles
(Skidmore and Layton, 1992). The results also indicated that increase in

organic matter concentration and water content could decrease WEF.
Such results may be related to binding forces of organic matter and
water (Colazo and Buschiazzo, 2010; Sirjani et al., 2019). In our study,
plots with no residue removal had higher soil water content due to less
evaporation losses compared to plots with residues removed (Rakkar
et al., 2019). Water content is known to affect soil aggregation through
wetting and drying; freezing and thawing; and freeze-drying (Layton
et al., 1993; Bullock et al., 2001). The presence of relatively high water
content in control plots could have increased the cohesive forces to bind
soil particles. During soil sampling and even after air drying, soils from
high soil water content plots had intact large clods and macro-
aggregates as opposed to baled plots where soils were composed of
predominately micro aggregates (powdery), which clearly affected the
amount of erodible fraction. Therefore, our results indicate that even
though soil water content is highly dynamic in both time and space,
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determination of soil water content during sampling could be important
to explain observed wind erodible fraction. The relation of CaCO3

concentration with WEF is contradictory in literature. Our results agree
with the study by López et al. (2007) that showed no correlation
whereas contrast with other studies reporting increase or decrease in
WEF with an increase in CaCO3 concentration (Chepil, 1954; Fryrear
et al., 1994). Our analysis indicates that the measurement of percent
residue cover and soil water content, in addition to intrinsic soil
properties, may improve the predictability of WEF for soils in Nebraska.

The stepwise regression analysis selected silt content, clay content,
organic matter concentration, and percent residue cover as the main
predictors of WEF in Eq. (4):

= + × − × − ×

− ×

WEF% 84.3 2.64 %silt 0.30 %clay 7.43 %

organic matter 0.15 %residue cover (4)

Organic matter concentration explained 31%, silt content 17%, clay
content 6%, and percent residue cover 2% of the variation in the model

with cumulative coefficient of determination of 57%. In our new WEF
equation, percent residue cover was the additional parameter over the
equation by Fryrear et al. (1994). The negative correlation of residue
cover with WEF elucidated the importance of retaining residue cover to
reduce WEF. The retention of residue cover is important to protect soil
from abrupt fluctuations of temperature and water content (Blanco-
Canqui and Wortmann, 2017). Frequent freeze-thaw and wet-dry cycles
weaken the aggregates resulting in higher proportion of WEF. It is
important to mention that the given equation was developed without
using boundary conditions of 0 to 100% (beta-distribution) in stepwise
regression analysis because of 1) nearly normal distribution of residuals
and 2) none of the predicted WEF showed any value below 0% or above
100% using the new equation. Measured WEF and Eq. (4) output
showed significant correlation with explanation of 49% variation in the
2017 measured WEF dataset (Fig. 4).

Based on the coefficient of determination and root mean square
error, the predictive ability of new WEF equation was, however, similar
to the WEF equations developed by Fryrear et al. (1994) and López
et al. (2007) (Fig. 4). It is important to highlight that our new equation
did not include percent sand, ratio of sand to clay, and CaCO3 content
but had percent residue cover as an additional parameter as compared
to Fryrear et al. (1994) and López et al. (2007) equation. The new
equation showed the highest coefficient of variation of all equations
and the data points were scattered more uniformly around the 1:1 line
unlike predicted data points by the equations of Fryrear et al. (1994)
and López et al. (2007), in which data points were clustered into two
separate groups. The differences observed in prediction pattern could
be due to the use of different parameters in our new equation compared
to the existing WEF equations. Overall, contrary to our expectations,
the newly developed equation did not improve prediction of WEF. The
existing and the new WEF equations showed nearly 50% of un-
certainties in the results. We hypothesize that more data points from a
wider range of soil textural classes, organic matter concentrations, and
levels of residue cover than those used in this study could be needed to
for a better estimation of WEF.
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Fig. 3. Relationship between measured wind erodible fraction and predicted
wind erodible fraction by López et al. (2007) flat sieve equation for three re-
sidue treatments.

Table 4
Absolute relative error, root mean square error, and coefficient of variation
between measured wind erodible fraction (WEF) and predicted WEF for each
treatment across site-year No. of data points= 33 for each treatment.

Control Grazing Baling

Fryrear et al. (1994)
Absolute relative error (%)
Mean 43 39 45
Std. deviation 29 22 17
Maximum 127 101 77
Minimum 1 7 1

Root mean square error 8.0 9.1 9.7
Coefficient of variation (%) 22.7 26.5 28.0

Rotary sieve equation by López et al. (2007)
Absolute relative error (%)
Mean 44 48 50
Std. deviation 29 33 25
Maximum 123 185 80
Minimum 4 2 1

Root mean square error 22.5 22.0 15.2
Coefficient of variation (%) 43.4 44.5 23.2

Flat sieve equation by López et al. (2007)
Absolute relative error (%)
Mean 45 49 51
Std. deviation 33 38 26
Maximum 138 204 84
Minimum 1 0 1

Root mean square error 21.7 21.5 14.3
Coefficient of variation (%) 41.9 43.4 21.9
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3.3. Simulated soil loss using SWEEP

Corn residue grazing and baling impacted the simulated soil loss for
the bare soil condition scenario (Table 6). Averaged across site-years,
mean soil loss due to residue baling was 0.2 kgm−2 more than the
control. The increase in soil loss by baling ranged from 0.1 kgm−2 at
Scottsbluff to 1.0 kgm−2 at Odessa in the first year compared with the
control. After considering standard error within a treatment for each
site-year, residue baling appeared to increase soil loss at four of the 13
site-years compared with the control. Averaged across site-years, mean
soil loss due to residue grazing was 0.1 kgm−2 less compared with the
control. After considering standard error within a treatment for each
site-year, residue grazing appeared to decrease soil loss at Clay center in
the second year. In general, sites with sandy loam texture (Scottsbluff,
Ainsworth, and Norfolk) had greater soil loss (2.1 kgm−2) compared
with the sites which had silty loam texture (Clay Center, Nebraska City,
and Odessa) at 0.7 kgm−2, indicating more susceptibility of coarse
textured soils to wind erosion irrespective of crop residue management.
We expected variability in simulated soil loss due to the precipitation
gradient of Nebraska. Precipitation could be one of the major factors
affecting soil water deficit that could impact soil organic matter and
residue production, which could affect wind erodible fraction. How-
ever, no specific pattern of simulated soil loss was observed along the
precipitation gradient in Nebraska. It appears that intrinsic soil prop-
erties such as texture have more impact on soil erosion than pre-
cipitation. For example, Scottsbluff (400mm) receives 1.6 times lower
precipitation than Norfolk (706mm), but both sites had similar total
soil loss due to sandy loam textural class (Table 6).

Corn residue treatments also influenced the threshold velocity to
initiate soil erosion given measured surface conditions for each re-
plication (Table 6). Averaged across site-years, the mean threshold
wind velocity required to initiate erosion was 1.9 m s−1 less for baled
treatment than the control. The results indicate that soils under baled
treatment were more prone to wind erosion compared with that under
control. The residue grazing treatment had mean threshold wind

velocity of 10.8m s−1, which was 0.6m s−1 less than control but
1.3 m s−1 more than the baled treatment. Corresponding to the
threshold velocity results, the probability of threshold wind velocity to
occur in a given month at a site was also higher for the baled treatment
compared with the grazed and control treatments. Overall, the SWEEP
output indicated that baling could increase the total soil loss in this
region.

To determine the importance of retaining residue cover, total soil
loss was simulated using residue cover of each treatment along with
other soil, biomass, and weather inputs given in Table 1. Corn residue
treatments showed no influence on total soil loss except at Scottsbluff
(Table 7). At this site, average soil loss due to baling increased to
0.5 kgm−2 in 2015 and to 0.7 kgm−2 in 2016 compared to 0.0 kgm−2

with the control and grazed plots. As expected, a decrease in residue
cover decreased the threshold wind velocity needed to initiate soil
erosion. Averaged across-site years, baled plots required threshold ve-
locity of 14m s−1 to initiate wind erosion followed by grazed
(19m s−1) and control (21m s−1) treatments. Similar to bare soil
condition results, baling had the highest probability to cause wind
erosion in a given month.

Simulated SWEEP output for bare soil conditions indicated that
residue baling could affect the soil susceptibility to wind erosion
whereas grazing impact could be minimal. It appears that residue
baling weakens the aggregate stability that results in breakdown of
coarse aggregates into smaller aggregates, increasing WEF (< 0.84mm
diameter soil). Previous studies of residue baling and grazing reported
25 to 43% increase in WEF due to residue baling (Blanco-Canqui et al.,
2016; Ruis et al., 2018). This could be due to the mechanical action of
the baler, such as the raking action of the residue pickup teeth in
breaking up aggregates. Decreased threshold velocity to initiate soil
erosion also indicated that soil aggregates in baled plots could be
weaker than aggregates of control and grazed treatments. It is im-
portant to note that irrespective of residue treatment, simulated soil loss
obtained for bare soil conditions (Table 6) was much higher than re-
sidue cover conditions (Table 7). Our results emphasize the critical

Table 5
Absolute relative error, root mean square error, and coefficient of variation and determination between measured wind erodible fraction (WEF) and predicted WEF
for each site across treatment and years.

Scottsbluff Ainsworth Norfolk Odessa Clay Center Nebraska City

No. of data points 18 12 12 12 27 18
Fryrear et al. (1994)

Absolute relative error (%)
Mean 46 23 58 23 54 66
Std. deviation 13 27 56 17 22 7
Maximum 60 102 185 54 82 77
Minimum 16 1 5 2 11 50

Root mean square error 11.1 11.1 21.2 7.8 17.2 12.5
Coefficient of variation (%) 19.7 12.9 26.1 36.4 43.6 19.4
Coefficient of determination (%) 0.001 0.04 0.13 0.11 0.24⁎ 0.63⁎

Rotary sieve equation by López et al. (2007)
Absolute relative error (%)
Mean 29 40 34 53 47 52
Std. deviation 10 8 15 36 28 14
Maximum 44 48 50 110 127 67
Minimum 12 16 7 1 5 16

Root mean square error 11.1 16.2 22.6 7.3 16.7 9.8
Coefficient of variation (%) 19.6 18.8 27.7 34.3 42.2 15.3
Coefficient of determination (%) 0.008 0 0.02 0.21 0.28⁎ 0.77⁎

Flat sieve equation by López et al. (2007)
Absolute relative error (%)
Mean 42 21 23 23 58 62
Std. deviation 14 30 19 19 22 10
Maximum 56 112 58 58 85 79
Minimum 9 3 3 3 3 45

Root mean square error 11.1 16.2 22.5 7.4 17 9.9
Coefficient of variation (%) 19.7 18.8 27.7 34.4 42.9 15.4
Coefficient of determination (%) 0 0.01 0.02 0.21 0.26⁎ 0.77⁎

⁎ numbers followed by asterisk signify significant relation between measured and predicted WEF at 0.05 significance level.
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Fig. 4. Relationship between measured and predicted wind erodible fraction (WEF) using new equation and existing prediction equations developed by Fryrear et al.
(1994) and López et al. (2007).

Table 6
Amount of soil loss, threshold velocity to initiate erosion, and probability of threshold wind velocity to occur on a given day in March under three residue treatments
for study sites in Nebraska as calculated by the SWEEP model under bare soil conditions.

Soil loss, kg m−2 Threshold wind velocity, m s−1 Probability (%)

Control Grazed Baled Control Grazed Baled Control Grazed Baled

2015
Scottsbluff 2.2 ± 0.0a 2.1 ± 0.1 2.3 ± 0.0 10.7 ± 0.3 12.0 ± 1.0 10.0 ± 0.6 7.0 ± 0.9 4.7 ± 2.1 9.3 ± 2.0
Ainsworth 1.9 ± 0.0 1.9 ± 0.0 1.9 ± 0.1 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 24.5 ± 0.0 24.5 ± 0.0 24.5 ± 0.0
Norfolk 2.2 ± 0.1 2.2 ± 0.1 2.3 ± 0.1 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 24.6 ± 0.0 24.6 ± 0.0 24.6 ± 0.0
Odessa 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.1 14.5 ± 0.5 15.0 ± 0.0 12.5 ± 0.5 1.1 ± 0.2 0.9 ± 0.0 3.4 ± 0.8
Clay Center 0.9 ± 0.6 1.5 ± 0.2 1.4 ± 0.0 12.0 ± 1.4 10.7 ± 1.5 10.3 ± 0.4 6.6 ± 4.3 11.3 ± 5.3 11.6 ± 2.1
Nebraska City 1.1 ± 0.0 1.1 ± 0.1 1.2 ± 0.1 10.0 ± 0.0 10.7 ± 0.3 9.7 ± 0.3 8.0 ± 0.0 6.1 ± 0.9 9.6 ± 1.6

2016
Scottsbluff 2.2 ± 0.0 2.2 ± 0.0 2.4 ± 0.1 11.3 ± 0.3 11.0 ± 0.0 9.7 ± 0.3 5.4 ± 0.7 6.1 ± 0.0 10.3 ± 1.4
Norfolk 2.1 ± 0.1 2.3 ± 0.3 2.4 ± 0.1 12.0 ± 1.0 10.5 ± 2.5 10.0 ± 1.0 5.8 ± 2.5 14.0 ± 10.6 12.7 ± 4.4
Odessa 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.5 14.0 ± 0.0 15.0 ± 0.0 14.0 ± 1.0 1.4 ± 0.0 0.9 ± 0.0 1.7 ± 0.8
Clay Center 0.6 ± 0.3 0.0 ± 0.0 1.1 ± 0.5 13.7 ± 0.7 14.7 ± 0.3 10.0 ± 0.6 2.3 ± 0.6 1.2 ± 0.2 13.0 ± 2.7

2017
Ainsworth 2.0 ± 0.1 1.0 ± 1.0 2.2 ± 0.2 8.0 ± 0.0 11.5 ± 3.5 7.5 ± 0.5 24.5 ± 0.0 12.6 ± 11.9 34.2 ± 9.8
Clay Center 0.4 ± 0.4 0.5 ± 0.5 0.9 ± 0.4 14.3 ± 0.9 12.7 ± 1.3 13.3 ± 0.9 1.7 ± 0.7 5.4 ± 3.9 2.9 ± 1.2
Nebraska City 1.0 ± 0.0 1.0 ± 0.0 1.3 ± 0.3 11.3 ± 0.3 11.3 ± 0.3 9.0 ± 0.0 4.5 ± 0.7 4.5 ± 0.7 12.9 ± 0.0
Average across site-years 1.3 1.2 1.5 11.4 10.8 9.5 9.0 8.9 12.5

a Numbers followed by ‘± ’ refer to standard error within a treatment.

M.K. Rakkar, et al. Geoderma 353 (2019) 25–34

32



importance of covering soils with residue. The presence of residue on
the soil surface buffers the wind erosive forces and could decrease the
wind erosion risks (Blanco-Canqui and Wortmann, 2017). In our study,
the greatest simulated soil loss was observed at Scottsbluff under the
baled treatment. The residue cover at this site was< 20%, whereas
other sites had>20% residue cover even in baled plots (Table S2). It
appears that in our study region, retention of at least 20% residue cover
has the potential to decrease the wind erosion risks. Overall, the SWEEP
model suggests that residue baling may increase wind erosion risks by
weakening the soil aggregates, however soil loss can be prevented by
having>20% residue cover in the study region.

4. Summary and conclusion

Comparison of our measured WEF with predicted WEF using the
equations by Fryrear et al. (1994) and López et al. (2007), indicated
that the equation by Fryrear et al. (1994) predicted WEF more sa-
tisfactorily than the equations by López et al. (2007) in our study re-
gion. However, all the above WEF equations under-estimated WEF
suggesting that their predictive ability could vary based on residue
management and site-specific conditions. A new equation (WEF
%=84.3+ 2.64 silt%-0.30 clay%-7.43 organic matter%-0.15 crop
residue cover%.) developed using our measured data from multiple
sites had no better predictive ability than the existing equations, which
suggests the need to further refine the predictive ability of WEF equa-
tions for the region.. Additionally, simulation of soil loss with the
SWEEP models suggested that wind erosion can be reduced by retaining
at least 20% residue cover during times when soils are most susceptible
to wind erosion.
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Odessa 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 24.0 ± 0.0 24.0 ± 0.0 19.0 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1
Clay Center 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 21.7 ± 0.4 18.7 ± 0.8 15.3 ± 0.4 0.0 ± 0.0 0.2 ± 0.1 0.9 ± 0.2
Nebraska City 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 19.0 ± 0.0 18.0 ± 0.7 15.3 ± 0.4 0.1 ± 0.0 0.2 ± 0.1 0.7 ± 0.1

2016
Scottsbluff 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.4 20.7 ± 0.3 20.0 ± 0.0 12.3 ± 0.9 0.1 ± 0.0 0.2 ± 0.0 4.0 ± 1.3
Norfolk 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 21.0 ± 1.0 19.5 ± 1.5 13.5 ± 0.5 0.1 ± 0.0 0.2 ± 0.1 2.8 ± 0.6
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2017
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Average across site-years 0 0 0.1 20.9 18.6 14 0.1 0.1 1.5

a numbers followed by ‘± ’ refer to standard error within a treatment.
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